doi:10.3969/j.issn.1006-9852.2024.03.007

• 综 诺 •

巨噬细胞在慢性疼痛中的作用机制和研究进展*

田 伟 1 苏山春 2 徐雪琴 2 柯昌斌 2 $^\Delta$ (湖北医药学院附属太和医院 1 麻醉科, 2 麻醉疼痛研究所,十堰 442000)

摘 要 在医学研究中,慢性疼痛一直是备受关注的热点领域。慢性疼痛的生理学和病理学机制一直是研究的难点,其包括疼痛信号的传导、感知和调控机制等。在临床中慢性疼痛的发生通常与炎症、肿瘤、神经损伤等因素有关。巨噬细胞作为免疫系统中的重要成分,不仅起到吞噬清除功能,还能产生多种炎症因子和细胞因子,调节炎症和免疫反应。最近研究表明巨噬细胞在各种慢性疼痛的发生和发展中都起着重要作用,提示其可能是未来治疗疼痛的有效靶点之一。本文将重点讨论巨噬细胞在慢性疼痛领域的最新进展,包括巨噬细胞的功能和作用机制,以及与巨噬细胞相关的信号通路和分子机制,为进一步研究和治疗慢性疼痛提供新的思路和策略。

关键词 慢性疼痛; 巨噬细胞; 炎症; 肿瘤

Mechanism and research progress of macrophages in chronic pain *

TIAN Wei 1, SU Shan-chun 2, XU Xue-qin 2, KE Chang-bin 2 A

(¹ Department of Anesthesiology; ² Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China)

Abstract Chronic pain has been a hot area of concern in medical research. The physiological and pathological mechanisms of chronic pain have always been difficult to study, including the transmission, perception and regulatory mechanisms of pain signals. In clinical studies, the occurrence of chronic pain is usually associated with inflammation, tumors, neurodegeneration and other factors. Macrophages, as an important component of the immune system, not only have phagocytic and clearance functions, but also produce a variety of inflammatory factors and cytokines to regulate inflammation and immune responses. Recent studies have shown that macrophages play an important role in the occurrence and development of various chronic pain, suggesting that they may be one of the effective targets for future pain treatment. This article focuses on the recent advances of macrophages in the field of chronic pain, including the functions and mechanisms of macrophages, as well as the signaling pathways and molecular mechanisms related to macrophages, which provides new ideas and strategies for further research and treatment of chronic pain.

Keywords chronic pain; macrophage; inflammation; tumor

慢性疼痛是指持续时间超过3个月的持续或反复发作的疼痛,国际疼痛学会将其定义为一类独立的疾病^[1]。目前我国慢性疼痛患病人群已达3亿,该人群呈快速增长的同时还出现年轻化趋势,在美国该病患病率在11%~40%之间^[2,3]。慢性疼痛容易导致病人出现焦虑、抑郁等心理和生理问题,给家庭和社会造成负担,该病在研究中的非致命性健康损害高危因素中也居于首位^[4]。常见的治疗方法

有手术治疗、药物控制等。药物在长期使用时往往 伴随有严重的不良反应,如长期使用阿片药物会出 现较为严重的成瘾性、免疫抑制等症状,现已不被 视为慢性疼痛的一线治疗; 非甾体抗炎药作为非神 经性疼痛(如骨关节炎)的一线治疗药物,长期使 用也会出现消化道溃疡、出血等症状。手术则多见 于治疗腰椎和颈椎疼痛,包括脊柱减压、椎间盘切 除术等,治疗效果则好坏参半,其他治疗手段如针

2024疼痛3期内文.indd 205

^{*}基金项目:国家自然科学基金(3225018); 2021年度十堰市市级引导性科研项目(21Y30)

[△] 通信作者 柯昌斌 changbinke-iap@taihehospital.com

灸、运动疗法的治疗效果也具有不确定性^[5]。因此对于慢性疼痛的治疗仍需进一步的探索。

慢性疼痛的发展涉及到多种神经生理机制,大多数慢性疼痛中可见炎症和神经病变或损伤参与:外周组织损伤和持续性炎症引起的炎性痛,是许多慢性疼痛的重要原发或诱发因素(如骨关节炎疼痛、创伤后疼痛等),疼痛在难以缓解的同时还伴有中枢敏化;神经病变或损伤则会导致神经元的异常放电并出现感觉异常和感觉过敏等现象,容易形成难治的神经病理性疼痛^[6,7]。另外,近年来我国癌症发病率和死亡人数明显上升,转移性癌痛也成为一个有待解决的问题;研究显示我国男性以肺癌最为好发,女性则为乳腺癌,这些癌症常转移至骨骼系统,造成骨质溶解并引起剧烈疼痛,这种转移性骨癌痛现今仍难以得到有效控制,明显增加了病人死亡风险^[8,9]。

近年来免疫细胞在慢性疼痛中的作用机制引起 疼痛研究的重点关注; 在免疫细胞中, 巨噬细胞在 慢性疼痛的形成和维持中扮演着关键角色, 其可通 过吞噬损伤组织、释放促炎介质、与神经元相互作 用等途径提高神经元敏感性,从而导致慢性疼痛的 发生[10]。如在炎症的早期,巨噬细胞主要表现为 M1型,分泌促炎因子(如 IL-6、 $TNF-\alpha$), 并激活 疼痛信号通路(如 NF-кB、p-38MAPK 等),从而 参与促进炎症反应和炎性疼痛的发生; 而在炎症晚 期,巨噬细胞主要向 M2 型分化,促进组织修复的 同时释放 IL-10、TGF-β等缓解疼痛^[11]。在传入神 经直接受损或间接受到刺激时,可通过增殖、迁移 等方式聚集在神经元胞体及轴突附近, 其释放的促 炎/促伤害感觉介质可作用于伤害感受器并诱发神经 病理性疼痛[12]。在骨癌痛中,巨噬细胞可通过其分 化及促进破骨细胞的生成,刺激骨髓内感觉神经末 梢,最终导致骨癌痛相关的感觉神经敏化[13]。因此, 本文旨在阐述巨噬细胞在慢性疼痛中的作用机制, 为临床治疗提供新的思路。

一、巨噬细胞

巨噬细胞作为常见的免疫细胞,广泛分布在神经系统和各种组织器官中,通常可分为两类,即浸润型巨噬细胞和驻留型巨噬细胞。浸润型巨噬细胞在损伤或感染后快速反应并浸润到组织中,该类巨噬细胞表达经典高亲和力结合受体 CCR2,通过与趋化因子 CCL2 结合从而聚集并影响疼痛 [14]。后一类驻留型巨噬细胞则在维持正常组织稳态中起着关键作用,经神经损伤、炎症等刺激活化同样也参与了疼痛的发生 [15]。通常成熟的巨噬细胞可分化为经典活化巨噬细胞(M1型)和替代性活化巨噬细胞

(M2型)。M1型巨噬细胞主要为促炎作用,在炎症初期可释放多种促炎因子造成组织损伤及神经元敏感性增高(如 TNF-α、IL-1β、CCL5等);M2型巨噬细胞与 M1 不同,具有较强的组织修复能力和抗炎作用,可分泌抗炎细胞因子对抗损伤(如IL-10、TGF-β等)^[11]。在炎症发生早期,巨噬细胞通常为 M1 表型,针对刺激可释放多种炎症介质以快速启动炎症反应;在炎症后期,为了防止 M1型巨噬细胞释放过量的炎症因子,M1型巨噬细胞发生凋亡或转变为 M2型,起到抑制炎症及减轻疼痛的作用 [16]。

在慢性疼痛中巨噬细胞主要通过以下方式发挥作用。一方面,巨噬细胞能够浸润到受损组织,并释放趋化因子(如 CCL2、CCL3 等),募集更多的巨噬细胞和其他炎性细胞渗透受损组织,形成一个正反馈循环机制,持续或加重炎症和疼痛^[17]。另一方面,在受损的神经系统中,巨噬细胞与神经元、胶质细胞相互作用,通过分泌炎性因子 TNF-α、IL-6、IL-1β等,直接或间接的激活或敏化伤害感受器,从而增强疼痛信号的产生和传导^[18]。例如,在脊髓损伤后,巨噬细胞能够进入脊髓灰质,与脊髓神经元和星形胶质细胞相互作用,释放 TNF-α、IL-6等因子,诱导钠通道 Nav1.3 的表达上调,增加伤害感受神经元的兴奋性和自发性放电活动,最终导致中枢性疼痛^[19]。

二、巨噬细胞与炎性痛的关系

炎性痛作为临床上常见的疼痛, 可由创伤、感 染、化学刺激等诱发,这些刺激因素引起巨噬细胞 等免疫细胞释放炎症因子,造成局部组织产生炎症 反应后,会使炎症区域以痛觉过敏、痛觉超敏为主 要特征[20]。在外周组织的炎症反应中,循环单核细 胞来源的浸润性巨噬细胞起着主要作用。在组织或 神经损伤后, 如前所述, 巨噬细胞表达经典高亲和 力结合受体 CCR2, 因此被趋化因子 CCL2 募集到 受损部位并分化为促炎性巨噬细胞(M1型),从 而参与驱动炎症及炎性疼痛的形成,已有文献证明 CCL2 通过激活 CCR2 招募巨噬细胞、淋巴细胞等 免疫细胞延长炎症的持续时间从而促进急、慢性疼 痛的发生[14,20]。以骨关节炎(osteoarthritis, OA)为例, 相关报道称患有 OA 疾病的人群经常会出现较为持 续的疼痛,在这些病人的关节滑液、周围滑膜组织 和外周血中可见较高水平的 CCL2, 并伴有滑膜组 织中 CCR2 表达的增加 [17]。该患病人群中的影像学 检查 OA 严重程度和关节症状显示与滑膜组织中活 化巨噬细胞的数量相关,同时疼痛强度与滑液及损 伤组织中的 CCL2 上调呈正相关 [21]。在干预 CCL2 的合成或与 CCR2 的结合后,损伤部位中的巨噬细胞数量明显降低,相应关节损伤和炎症都有所缓解,其中干预 CCL2 合成的效果更为显著 [^{22]}。综上可知,通过 CCL2/CCR2 趋化因子系统干扰损伤部位巨噬细胞的募集可以有效缓解炎性痛。

既往的观点认为在炎症初期 M1 型巨噬细胞被 募集后主要通过分泌促炎因子来促进疼痛(如 IL-6、 TNF-α、IL-1β等); 这些巨噬细胞源型的伤害感受 介质可触发多种神经元细胞信号, 最终导致神经元 敏化或兴奋,如胞浆 Ca²⁺ 动员和磷脂酶 C (PLC)、 蛋白激酶 C (PKC)、p-38MAPK、NF-кB 等, 其中 PLC、PKC 已被证实可增强 TRPV1、TRPA1、Cav3.2 通道的活性来促进病理性疼痛的发生[10]。也有观点 认为, 表型可能为M1型的巨噬细胞在募集活化后, 立即分泌高迁移率蛋白 (high mobility group box 1 protein, HMGB1),该蛋白可通过促进胞膜受体的活 化从而参与疼痛的发生, 如晚期糖基化终产物受体 RAGE 和 Toll 样受体 4 (TLR4) 信号传导,这两种受 体又在巨噬细胞中表达, 对巨噬细胞的促炎促痛作 用可能会形成正反馈机制; RAGE 在被巨噬细胞释 放的 HMGB1 激活后可直接导致 NF-кB 活化和促 炎因子的生成参与炎性痛;而 TLR4 则似乎有助于 促炎细胞因子的产生,在使TLR4 受体功能性失活 后,研究发现表达这两种受体的巨噬细胞接受同种 刺激时不再产生促炎因子, 如果抑制巨噬细胞释放 HMGB1 或拮抗该蛋白后,可明显减轻神经炎症和 炎症所造成的疼痛[23]。综上我们推测巨噬细胞可通 过释放 IL-6、TNF-α、IL-1β参与感觉神经元的发生, 也可通过分泌 HMGB1 激活相关信号通路导致炎症 的加重和炎性痛的持续。同样, 敏化的感觉神经元 也能影响巨噬细胞,如通过释放 ATP、SP、CGRP 等介质增强巨噬细胞炎性介质的释放[10]。

巨噬细胞作为具有较强可塑性的免疫细胞,还可通过多种机制来减轻炎性痛,在炎症部位通过吞噬损伤的组织或细胞碎片和产生抗炎因子 IL-10 对感觉神经元起到抑制作用 [10]。近期的研究发现一个新的疼痛缓解机制,即巨噬细胞可通过转移线粒体到感觉神经元,从而促进炎性痛的消退 [24]。通过在小鼠足下注射角叉菜胶来制造炎性痛模型,该模型诱发的痛觉过敏通常在 3~4 天内消退,但在使用白喉毒素耗竭背根神经节 (dorsal root ganglion, DRG)、脊髓、血液中的巨噬细胞后,小鼠机械性痛觉过敏、热痛觉过敏持续时间延长至最短 6 天。既往的文献已指出在慢性疼痛中,神经元的线粒体功能如氧化磷酸化和 Ca²+缓冲,通常会受到损害 [25]。并且感觉

神经元中线粒体功能的缺失已经被证实能延缓炎性 疼痛的消退[26]。因此,如果能修复感觉神经元的线 粒体功能,可能会有助于炎性疼痛的消退。在缺血 性卒中后,神经元可以吸收由相邻星形胶质细胞释 放的线粒体 [27]。故假设巨噬细胞通过供应线粒体帮 助神经元中功能线粒体库的恢复,从而促进炎性痛 的消退。在炎性疼痛峰值期间, DRG 神经元中的耗 氧量降低了30%,并在疼痛消退之前恢复;通过使 用与线粒体蛋白共价结合的 MitoTracker Deep Red (MTDR) 对巨噬细胞的线粒体进行染色,并将染色 后的巨噬细胞与神经元细胞系 Neuro 2a (N2 A) 共 培养。2小时后,通过流式细胞术和图像流在N2A 细胞中检测到巨噬细胞源型 MTDR+线粒体。在 炎性痛小鼠中 NeuroTrace 示踪神经元区域内,可 见 MitoDendra 2 (与线粒体特异性结合的荧光蛋 自)的面积增加,该增加在MitoDendra 2+神经 元中最为显著。在与对侧相比,炎性痛造模侧的 MitoDendra 2 阳性细胞的百分比加倍增高。以上证 明了巨噬细胞在炎性痛期间可将线粒体转移到相应 的神经元从而缓解炎性痛。而巨噬细胞是通过释放 囊泡转移线粒体。这种释放的细胞外小泡与感觉神 经元的对接是由受体-配体相互作用促进的。M2型 巨噬细胞释放的细胞外小泡表达 CD200R, 而神经 元表达其经典配体 CD200 [28]。在将 CD 200R 敲除 后, 其炎性疼痛延长并持续至少 16 天。但有趣的 是在将 CD200 敲除后,对小鼠炎性痛的消退却无任 何负面影响, 因此提示还存在另一种 CD200R 配体 的参与。iSec1 是之前被证实在肠道中特异性表达 的 CD200R 配体,但也被证实在 DRG 中表达 [29]。 然而在 CD200-/- 小鼠中通过抑制 iSec1 表达后发现 其痛觉过敏的消退被显著抑制, 因此, 巨噬细胞表 达 CD200R 和感觉神经元配体上的 iSec1 是巨噬细 胞缓解炎性疼痛所必需的。

三、巨噬细胞与神经病理性疼痛的关系

神经病理性疼痛是指由躯体感觉系统损害或疾病导致的疼痛,常与神经免疫相互作用有关^[8]。曹亚红等^[12]近期阐述了巨噬细胞如何通过自身的极化和释放 IL-1β、TNF-α等炎性因子,直接或间接地使伤害性感觉神经元敏化;并揭示了巨噬细胞-脊髓小胶质细胞的调控机制。然而,并未说明巨噬细胞在脊髓背根神经 DRG 中如何参与神经病理性疼痛的调控。DRG 作为初级感觉神经元聚集的部位,负责传输和调节机体感觉,以及接受和传导伤害性感受,现仍是疼痛研究中的重点领域;最新的研究提出在 DRG 中巨噬细胞与卫星胶质细胞 (satellite

glial cells, SGCs)、神经元形成三联体通过嘌呤能受体在神经病理性疼痛中发挥着重要作用^[18]。

研究发现神经病理性疼痛的启动主要依靠于 DRG 中的常驻巨噬细胞扩增,而不是依赖于浸润到 神经损伤部位的巨噬细胞^[12]。DRG 中巨噬细胞参 与神经病理性疼痛的发生往往与 SGCs、神经元相 关联。以三叉神经痛为例,其发病机制如下:将眶 下神经结扎后,第1天三叉神经节 DRG 中损伤的 神经元数量增加,而从第3天开始,DRG中的常驻 巨噬细胞开始增殖,并在 SGCs 活化之前就完成在 DRG 附近的扩增; SGCs 在被巨噬细胞和受损神经 元激活后, 能够分泌炎性介质, 并通过作用于邻近 的 SGCs 放大疼痛信号,从而参与神经病理性疼痛 的发展[18]。因此,神经病理性疼痛的起始过程可能 首先依赖于 DRG 中受损的神经元胞体释放的外泌 体和炎性递质(如ATP、CSF1等),它们能够活 化巨噬细胞和 SGCs。其中神经元胞体释放的含有 miR-21 的外泌体可通过促进 M1 型巨噬细胞分化和 抑制 M2 型巨噬细胞的形成,从而加剧神经病理性 疼痛[10]。

受损神经元胞体释放的 ATP, 其作为一种细 胞外信号分子可激活 P2 嘌呤能受体, P2 嘌呤能受 体包括 P2X 离子型受体和 P2Y 代谢型受体, P2X 受体可分为 P2X (1-7) 受体, P2Y 受体可分为 P2Y (1、2、4、6、11-14) 受体, 这两种受体在 SGCs 和 巨噬细胞上有不同的亚型表达。巨噬细胞主要表达 P2X1、P2X4、P2X7、P2Y1、P2Y2、P2Y4、P2Y6 和 P2Y12 受体。本文主要讨论巨噬细胞在神经病理 性疼痛中可能发挥作用的受体。在神经病理性疼痛 中,巨噬细胞与神经元相互作用主要依赖于 P2X4 和 P2X7 受体,这两种受体参与了基于 ATP 的细胞间促 炎通讯,激活后能够促使巨噬细胞释放(如 IL-1β、 TNF-α 和 IL-6等) 促炎细胞因子, 维持了长期的 炎症状态。此外,巨噬细胞上的 P2X4 被单独刺激 时,能够通过促进花生四烯酸 (AA)和前列腺素 E2 (PGE2) 的释放, 导致 Ca²⁺ 内流和 p38MAPK 活化 从而增加感觉神经元兴奋性, 其诱导的 Ca²⁺ 反应的 幅度由 P2Y13 和 P2Y11 受体的活性决定,但持续 时间由 P2X4 受体活性决定,巨噬细胞的迁移也与 P2X4 受体有关; 而巨噬细胞上的 P2X7 受体与细 胞中活性氧的产生有关,可介导小鼠巨噬细胞释放 IL-1β,这两种介质皆可作用于感觉神经元使其损伤 从而促进神经病理性疼痛的发生[18]。

巨噬细胞在 DRG 神经元周围与 SGCs 紧密相连,并为其提供结构支持。如前所述,在外周神

经损伤后,DRG 神经元周围的巨噬细胞扩增先于SGCs 活化。因此,巨噬细胞可能在神经病理性疼痛 DRG 中的三联体中起着关键作用。神经损伤后,巨噬细胞所释放的炎性介质如 TNF-α,能够直接作用于 SGCs,促进其活化从而放大疼痛信号 ^[30]。综上可知巨噬细胞-卫星胶质细胞-神经元三联体在神经病理性疼痛可能起着关键作用,为靶向嘌呤能 P2 受体的拮抗剂缓解神经病理性疼痛提供了理论依据。

四、巨噬细胞与骨癌痛的关系

骨癌痛作为常见的慢性疼痛,通常由其他部位的肿瘤细胞转移侵入骨骼而引起。这种骨转移形成的疼痛通常是深部的、难以忍受的,并会严重影响病人的生活质量^[11]。骨骼系统是肿瘤转移的常见部位之一,仅次于肺和肝,其中最常见的骨转移源于前列腺癌、乳腺癌等,60%~84%的癌症病人在骨转移后会经历不同程度的骨癌痛^[9]。因此,有效缓解骨癌痛对于提高病人的生活质量和延长其生存期至关重要。

目前,对于骨癌痛的治疗仍缺乏有效的方法。 近年来,一些研究发现免疫细胞在骨癌痛的发生和 维持中起着重要的作用。其中肿瘤相关巨噬细胞 (tumor-associated macrophages, TAMs) 被认为可能参 与了骨癌痛的发展。TAMs 是一种多功能的免疫细 胞,可以根据肿瘤微环境的信号而极化为不同的表 型。在骨转移癌中, TAMs 通常表现为 M2 型表型, 其主要作用为抗炎和促进肿瘤生长转移,释放的细 胞因子(如 IL-10)与免疫抑制有关, TGF-β则会 促进肿瘤的生长发育,血管内皮生长因子 A 能促进 癌症病人的肿瘤血管生成使其更容易发生转移, 可 能会促进骨癌痛的发生 [13]。因此,调节 TAMs 的极 化状态可能是治疗骨癌痛的有效策略。最近有研究 报道了 STING 激动剂在骨癌痛模型中对肿瘤造成的 骨质破坏及其诱发疼痛的抑制作用; 该激动剂可通 过巨噬细胞 STING 依赖的方式,将表现为 M2 型从 而促进肿瘤发展的 TAMs 重新转化为 M1 型抗肿瘤 的状态,并通过 IFN-I 信号通路和 CD8⁺ T 细胞介导 的免疫反应,可以抑制 BRCA1 基因缺陷的乳腺癌 细胞在骨髓内的生长和侵袭[31];并且还有研究发现 STING 激动剂能够在多种骨癌痛模型中有效的改善 骨癌痛和病人的运动功能,这种激动剂能通过调节 肿瘤微环境中的巨噬细胞活化状态,减少破骨细胞 的生成,从而减轻肿瘤对骨骼的破坏和压迫,提供 长期有效的癌痛缓解[32]。有研究发现巨噬细胞作为 一种调节骨代谢和骨重塑的免疫细胞,可通过分泌 RANKL等物质来刺激破骨细胞的生成; M2型 TAMs 可能会增强 RANKL 的表达和分泌,从而促进骨质的破坏和吸收。而 M1 型 TAMs 可能会抑制 RANKL 的表达和分泌,从而抑制骨质的损伤及破坏 ^[33]。综上所述,我们推测如果能使肿瘤微环境中的 TAMs 从M2 型转变为 M1 型,则可通过减少破骨细胞的生成及肿瘤的生长转移,从而有效的缓解骨癌痛。

五、小结与展望

随着对巨噬细胞在疼痛中作用的深入研究,巨噬细胞作为免疫系统中的重要成分,已被发现在炎性痛、神经病理性疼痛、骨癌痛中都扮演着重要的角色。在炎性痛中,巨噬细胞的活化和炎症因子的释放对于疼痛的产生和持续起到了关键作用。在神经病理性疼痛中,巨噬细胞和胶质细胞、神经元之间的相互作用对于疼痛的治疗具有潜在的价值。在骨癌痛中,巨噬细胞的活化和分型可以影响肿瘤细胞的转移和破骨细胞的生成,从而影响骨癌痛。

现在巨噬细胞在慢性疼痛的分子和细胞机制仍未完全阐明,需要进一步的研究验证;如巨噬细胞的亚型在慢性疼痛的不同阶段发挥的作用和机制,巨噬细胞与神经系统其他胶质细胞之间的相互调节机制,巨噬细胞分化与肿瘤细胞生长转移相互作用的具体机制。但我们有理由相信,基于巨噬细胞的靶向治疗策略,可能会成为慢性疼痛治疗领域的一个新的研究方向。未来的研究可以探讨如何通过调控巨噬细胞的表型分化和抑制其具体的受体,以及如何针对性地干预巨噬细胞相关的信号传导通路,最终在不影响其原有生理功能如吞噬、修复、抗原呈递的基础上促进慢性疼痛的缓解。

利益冲突声明: 作者声明本文无利益冲突。

参考文献

- [1] 曹伯旭,宋学军,万有,等.慢性疼痛分类目录和定义[J].中国疼痛医学杂志,2021,27(1):2-8.
- [2] 樊碧发.中国疼痛防控与健康促进战略蓝皮书:中国疼痛医学发展报告(2020)[M].北京:清华大学出版社,2020.
- [3] Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of chronic pain and high-impact chronic pain among adults-united states, 2016[J]. MMWR Morb Mortal Wkly Rep, 2018, 67(36):1001-1006.
- [4] Disease G, Incidence I, Monasta L, *et al*. Global, regional, and national incidence, prevalence, andyears lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematicanalysis for the Global Burden of Disease Study 2017[J]. Lancet,

- 2018, 392(10159):1789-1858.
- [5] 陈军.慢性疼痛转化研究的困境与挑战[J]. 空军军 医大学学报,2023,44(2):97-104.
- [6] Ji RR, Nackley A, Huh Y, et al. Neuroinflammation and central sensitization in chronic and widespread pain[J]. Anesthesiology, 2018, 129(2):343-366.
- [7] 张振宇,高旭,孟纯阳.基于代谢组学视角下的神经病理性疼痛研究进展[J].中国疼痛医学杂志,2023,29(5):359-365.
- [8] Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7):783-791.
- [9] 吴淑燕,林铭雪,陈安迪,等.骨癌痛的发生机制及 应急用药进展[J]. 创伤与急诊电子杂志,2021,9(2): 119-125.
- [10] Domoto R, Sekiguchi F, Tsubota M, et al. Macrophage as a peripheral pain regulator[J]. Cells, 2021, 10(8): 1881.
- [11] 牛卓娅, 张亚玲, 姚智燕, 等. 巨噬细胞极化与炎性疾病的研究进展 [J]. 河北医科大学学报, 2020, 41(6):742-745.
- [12] 曹亚红,李锐.巨噬细胞在神经病理性疼痛中的作用[J].国际麻醉学与复苏杂志,2022,43(2):4.
- [13] Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy[J]. Front Immunol, 2022, 13:888713.
- [14] Ramesh G. Novel therapeutic targets in neuroinflammation and neuropathic pain[J]. Inflamm Cell Signal, 2014, 1(3):e111.
- [15] Silva CEA, Guimarães RM, Cunha TM. Sensory neuron-associated macrophages as novel modulators of neuropathic pain[J]. Pain Rep, 2021, 6(1):e873.
- [16] Chen H, Shi H, Liu Y, et al. Activation of corticotropin-releasing factor receptor 1 aggravates dextran sodium sulphate-induced colitis in mice by promoting M1 macrophage polarization[J]. Mol Med Rep, 2018, 17(1):234-242.
- [17] Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis[J]. Ann Rheum Dis, 2017, 76(5):914-922.
- [18] Yang R, Du J, Li L, et al. Central role of purinergic receptors with inflammation in neuropathic pain-related macrophage-SGC-neuron triad[J]. Neuropharmacology, 2023, 228:109445.
- [19] Ding Y, Zhang D, Wang S, *et al*. Hematogenous macrophages: a new therapeutic target for spinal cord injury[J]. Front Cell Dev Biol, 2021, 9:767888.
- [20] Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential[J]. Pharmacol Ther, 2020, 212: 107581.

(下转第214页)

- endoscopic lumbar discectomy to avoid nerve injury: a double-blind study using a biased-coin design[J]. Drug Des Devel Ther, 2022, 16:315-323.
- [17] Zhang J, Wang X, Cai Z, et al. Analgesic effect of epidural anesthesia via the intervertebral foramen approach in percutaneous transforaminal endoscopic discectomy: a retrospective study[J]. BMC Anesthesiol, 2022, 22(1):397.
- [18] Park Y, Lee JH, Park KD, et al. Ultrasound-guided vs fluoroscopyguided caudal epidural steroid injection for the treatment of unilat eral lower lumbar radicular pain: a prospective, randomized, sin gle-blind clinical study[J]. Am J Phys Med Rehabil, 2013, 92(7):575-586.
- [19] 宋通渠,王宪峰,李晶晶,等.局部麻醉联合骶管麻醉在腰椎内窥镜手术中的镇痛效果[J].中国矫形外科杂志,2019,27(17):1570-1574.
- [20] Oh SK, Lim BG, Won YJ, *et al.* Analgesic efficacy of erector spinae plane block in lumbar spine surgery: a systematic review and meta-analysis[J]. J Clin Anesth, 2022, 78:110647.
- [21] 刘鹏飞,王劭恒,胡艳婷,等.右美托咪定联合罗哌卡因双侧竖脊肌平面阻滞对老年腰椎间孔镜手术病人镇痛效果及术后恢复的影响[J].中国老年学杂志,2021,41(10):2079-2083.
- (上接第 209 页)
- [21] Li L, Jiang BE. Serum and synovial fluid chemokine ligand 2/monocyte chemoattractant protein 1 concentrations correlates with symptomatic severity in patients with knee osteoarthritis[J]. Ann Clin Biochem, 2015, 52(Pt 2):276-282.
- [22] Dansereau MA, Midavaine É, Bégin-Lavallée V, et al. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity[J]. J Neuroinflammation, 2021, 18(1):79.
- [23] Sekiguchi F, Kawabata A. Role of HMGB1 in chemotherapy-induced peripheral neuropathy[J]. Int J Mol Sci, 2020, 22(1):367.
- [24] Van Der Vlist M, Raoof R, Willemen H, et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain[J]. Neuron, 2022, 110(4): 613-26.e9.
- [25] Duggett NA, Griffiths LA, Flatters SJL. Paclitaxel-in-duced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons[J]. Pain, 2017, 158(8):1499-1508.
- [26] Willemen H, Kavelaars A, Prado J, et al. Identification of FAM173B as a protein methyltransferase promoting chronic pain[J]. PLoS biology, 2018, 16(2):e2003452.

- [22] 程晓燕,李瑞华,李洪波,等.超声引导下竖脊肌平面阻滞在椎间孔镜术应用[J].中国矫形外科杂志, 2021,29(1):79-81.
- [23] Tseng V, Xu JL. Erector spinae plane block for postoperative analgesia in lumbar spine surgery: is there a better option?[J]. J Neurosurg Anesthesiol, 2021, 33(1):92.
- [24] Sørenstua M, Zantalis N, Raeder J, *et al.* Spread of local anesthetics after erector spinae plane block: an MRI study in healthy volunteers[J]. Reg Anesth Pain Med, 2023, 48(2):74-79.
- [25] Hu Z, Han J, Jiao B, *et al.* Efficacy of thoracolumbar interfascial plane block for postoperative analgesia in lumbar spine surgery: a meta-analysis of randomized clinical trials[J]. Pain Physician, 2021, 24(7):E1085-E1097.
- [26] Ahiskalioglu A, Yayik AM, Alici HA. Ultrasound-guided lateral thoracolumbar interfascial plane (TLIP) block: description of new modified technique[J]. J Clin Anesth, 2017, 40:62.
- [27] Ciftci B, Ekinci M, Celik EC, et al. Ultrasound-guided erector spinae plane block versus modified-thoracolumbar interfascial plane block for lumbar discectomy surgery: a randomized, controlled study[J]. World Neurosurg, 2020, 144:e849-e855.
- [27] Hayakawa K, Esposito E, Wang X, *et al*. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature, 2016, 535(7613):551-555.
- [28] Wright GJ, Jones M, Puklavec MJ, et al. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans[J]. Immunology, 2001, 102(2):173-179.
- [29] Kojima T, Tsuchiya K, Ikemizu S, *et al.* Novel CD200 homologues iSEC1 and iSEC2 are gastrointestinal secretory cell-specific ligands of inhibitory receptor CD200R[J]. Sci Rep, 2016, 6:36457.
- [30] Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(6):G748-G760.
- [31] Wang Q, Bergholz JS, Ding L, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer[J]. Nat Commun, 2022, 13(1):3022.
- [32] Wang K, Donnelly CR, Jiang C, et al. STING suppresses bone cancer pain via immune and neuronal modulation[J]. Nat Commun, 2021, 12(1):4558.
- [33] Bae S, Kim K, Kang K, *et al.* RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts[J]. Cell Mol Immunol, 2023, 20(1):94-109.

2024疼痛3期内文.indd 214 2024疼痛3期内文.indd 214