doi:10.3969/j.issn.1006-9852.2022.11.014

不同阿片类药物长时间储存于镇痛泵中的 稳定性分析*

郑 欢 1,2 王茂莹 2 康 仪 3 郑碧鑫 2△ 宋 莉 2△

(¹四川省医学科学院·四川省人民医院麻醉手术中心,成都 610072; ²四川大学华西医院疼痛科,成都 610041; ³四川大学华西医院转化神经科学中心・四川省麻醉转化医学工程实验室,成都 641400)

病人自控镇痛 (patient controlled analgesia, PCA) 是临床管理急、慢性疼痛的重要方法之一,通过皮 下、静脉、硬膜外、鞘内等途径给药, 可维持稳定 的药物浓度而产生满意的镇痛效果。根据不同镇痛 目的, PCA的使用时间非常灵活, 用于术后镇痛 通常为48~72小时,在癌性疼痛尤其是难治性癌 痛的治疗中, 采用鞘内输注系统外接输注港的模 式, PCA 的使用时间可长达 2 周或更久 [1,2]。用于 PCA 的镇痛药物以阿片类药物为主^[3],储存于聚 氯乙烯 (polyvinyl chloride, PVC) 药囊中。但 PVC 材质容易对一些脂溶性较强的药物产生吸附导致 药物衰减,影响治疗效果[4]。有研究显示,枸橼酸 芬太尼在 PVC 药囊中储存 72 小时后浓度衰减可达 1.5% [5], 引起国内外学者对该问题的广泛关注。目 前对于不同种类阿片类药物及其长时间储存于 PVC 药囊的稳定性变化还尚不清楚。因此, 本研究观 察吗啡、芬太尼、舒芬太尼、羟考酮和氢吗啡酮在 PVC 药囊中储存最长 28 天后药物相对含量变化和 细菌生长情况,为 PCA 的安全使用提供理论依据。

方 法

1. 实验分组和药品

选择 25 个电子式 PCA 镇痛泵专用的一次性 PVC 药囊(江苏爱朋医疗),随机分为 5 组 (*n* = 5)。吗啡组:盐酸吗啡注射液(配置浓度为 100 μg/ml);芬太尼组:枸橼酸芬太尼注射液(配置浓度为 1 μg/ml);舒芬太尼组:枸橼酸舒芬太尼注射液(配置浓度为 1 μg/ml);羟考酮组:盐酸羟考酮注射液(配置浓度为 1 μg/ml);氢吗啡酮组:盐酸氢吗啡酮注射液(配置浓度为 20 μg/ml)。在无菌治疗室均使用 0.9% 氯化钠注射液配置成总量为 100 ml 的药液储存至 PVC 药囊中。将药囊放置在室温条件保存

 $(16\sim25℃)$ 。于配药当天(设定为基础值),配药后第 3、7、14、21、28 天观察药液性状,检测药物含量并进行微生物培养。

2. 药物相对含量检测

由于药物特性不同,吗啡、羟考酮和氢吗啡酮 使用高效液相色谱 (high-performance liquid chromatography, HPLC) 进行检测, 芬太尼和舒芬太尼使 用高灵敏的液相色谱串联质谱 (liquid chromatography-tandem mass spectrometry, LC-MS/MS) 进行检测。 HPLC 色谱条件为:分析柱,SHIMADZU Shim-pack GUST C₁₈ (4.6 mm ×150 mm, 5 μm); 流动相, 乙腈-水 (0.1% 甲酸 5:95); 检测波长 230 nm。LC-MS/ MS 色谱条件为:分析柱,Agilent Poroshell HPH-C₁₈ (4.6 mm×100 mm, 2.7 μm); 流动相, 乙腈-水 (0.1% 甲酸 40:60)。质谱条件为: ESI 离子源; 离子源温度,300℃; 鞘气温度,250℃,毛细管电压, 3500 V;辅助电压,500 V。用于定量分析的检测离 子对: 芬太尼, m/z 337.2/188.1 (碎裂电压 136 V/碰 撞能量 20 eV); 舒芬太尼, m/z 387.2/238.1 (碎裂 电压 120 V/碰撞能量 15 eV)。

通过 HPLC 和 LC-MS/MS 方法得到不同阿片 类药物的峰面积值,根据计算公式: (配药后不同 时间峰面积/基础值)×100%,得到配药后各时间 点的药物相对含量。

3. 药液性状及细菌培养结果

每个药囊中抽取 1 ml 药液, 先观察有无变色、 是否澄清等一般性状, 再分别接种到胰蛋白胨大豆 琼脂(法国梅里埃微生物)进行需氧及厌氧菌培养。

4. 统计学分析

应用 SPSS 20.0 软件进行统计分析,计量资料 以均数 \pm 标准差 $(\bar{x}\pm SD)$ 表示,不同药物组间比 较采用单因素方差分析,不同时间点比较采用重复 测量方差分析。P<0.05 为差异有统计学意义。

^{*}基金项目:四川省科技厅重点研发项目(2020YFS0188);四川省自然科学基金(2022NSFSC1407);四川省卫生和计划生育委员会科研课题(18PJ171)

[△] 通信作者 郑碧鑫 bixin.zheng@scu.edu.cn; 宋莉 song_li76@163.com

结 果

1. 药物相对含量的变化

5种阿片类药物在PVC药囊中不同时间点的相对含量变化见表 1。吗啡、羟考酮和氢吗啡酮溶液储存于PVC药囊中的第 3、7、14、21 和 28天,含量与配置当天(基础值)比较均无明显降低(P > 0.05,见图 1)。而芬太尼和舒芬太尼溶液储存于PVC药囊中的第 3、7 和 14 天,含量保持稳定(P > 0.05),但在第 21 天和第 28 天发生了明显的衰减。芬太尼含量分别降至 92.2%±3.6%和90.7%±1.6%(见表 1),比配置当天药物含量明显降低(P < 0.01),与吗啡组相比有显著性差异(P < 0.01,见图 1);舒芬太尼含量分别降至 88.1%±3.6%和88.9%±8.1%(见表 1),比配置当天药物含量明显降低(P < 0.01),与吗啡组相比有显著性差异(P < 0.01,见图 1)。芬太尼和舒芬太尼两组在不同时间点的组间比较无显著性差异。

2. 一般性状及细菌培养

各时间点检测每组药液均未发现变色、沉淀或 悬浮物,接种并培养72小时后均无细菌生长(见 表2)。

讨 论

与传统的肌肉注射、口服给药等镇痛方式相比, PCA 镇痛技术具有起效迅速、体内血药浓度稳定、 药物用量少等优点,被广泛用于各种急、慢性疼痛 治疗。PCA主要由注药泵和储药囊系统组成,镇痛药液储存于药囊,通过注药泵输注,实现持续镇痛的目标^[6]。目前临床使用的药囊大多为具有亲脂性的 PVC 材质,该材料中的成分结构可与某些药物分子配位结合,从而选择性将药物分子吸附到输液器管壁表面。已发现 PVC 输液袋可对多种药物(如硝酸甘油、胰岛素、硫喷妥钠、他克莫司、氯丙嗪)产生具有临床意义的吸附作用,使药物浓度不稳定,影响用药的安全性及疗效^[7,8]。用于镇痛的阿片类药物中,吗啡、羟考酮和氢吗啡酮为盐酸盐类药物,

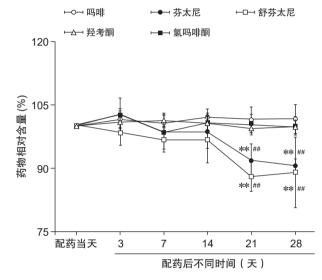


图 1 不同阿片类药物溶液储存于 PVC 药囊中不同时间 点相对含量的变化 $(n=5, \bar{x} \pm SD)$ **P < 0.01,与配药当天相比; **P < 0.01,与吗啡 组相比

表 1 不同阿片类药物在 PVC 药囊中不同时间点相对含量的变化 $(n = 5, \bar{x} \pm SD)$

组别	药物相对含量 (%)						
	配药当天(基础值)	配药后第3天	配药后第7天	配药后第 14 天	配药后第 21 天	配药后第 28 天	
吗啡组	100	101.6±2.5	100.8 ± 2.5	102.1 ± 1.9	101.4±3.2	101.7±3.5	
芬太尼组	100	102.9 ± 3.5	98.7 ± 3.3	98.6 ± 3.5	92.2±3.6****	$90.7 \pm 1.6*****$	
舒芬太尼组	100	98.7 ± 3.1	96.7 ± 2.9	96.7 ± 5.5	88.1±3.6**#	$88.9 \pm 8.1*****$	
羟考酮组	100	101.1 ± 0.6	101.2 ± 1.3	100.7 ± 0.7	99.6 ± 0.8	100.1 ± 0.6	
氢吗啡酮组	100	102.6 ± 0.3	98.4 ± 1.1	100.8 ± 1.1	100.6 ± 0.8	100.2 ± 0.4	

^{**}P < 0.01,与配药当天相比; #*P < 0.01,与吗啡组相比

表 2 不同阿片类药物在 PVC 药囊中不同时间点细菌培养结果 (n=5)

	配药后第3天	配药后第7天	配药后第 14 天	配药后第21天	配药后第28天
吗啡组	阴性	阴性	阴性	阴性	阴性
芬太尼组	阴性	阴性	阴性	阴性	阴性
舒芬太尼组	阴性	阴性	阴性	阴性	阴性
羟考酮组	阴性	阴性	阴性	阴性	阴性
氢吗啡酮组	阴性	阴性	阴性	阴性	阴性

2022疼痛11期.indd 874 2022疼痛11期.indd 874

芬太尼和舒芬太尼为枸橼酸盐类药物。后者的脂溶性较高,更易被 PVC 材料吸附,既往也有研究报道舒芬太尼在硬膜外导管中会被吸附 ^[9]。本研究对 5 种临床常用的阿片类镇痛药物在 PVC 药囊中的稳定性进行了长时间观察,发现吗啡、羟考酮和氢吗啡酮在各观察时间点的相对含量基本保持恒定。此外,PVC 药囊中药物的衰减还可随时间延长而逐渐增加,芬太尼和舒芬太尼在配药后第 21 天和第 28 天的检测中发现更为明显的衰减,药物含量降低高达 10%~12%。提示临床长时间使用 PCA 应高度重视药物的衰减情况,及时更换药囊,维持满意的镇痛效果。

随着 PCA 使用时间延长,储药囊中药液性状的稳定性也值得关注。若药液发生变性、污染等情况,将造成血液系统或中枢神经系统感染等灾难性后果。本研究将药囊置于室温环境,在各观察时间点均未发现药液变色、沉淀、悬浮物及细菌生长。即便药液自身性状保持稳定,但病人居家使用 PCA 的环境更复杂,且大多数肿瘤病人免疫力低下,医护人员仍然要警惕导管相关感染 (catheter-related infections, CRI) 的发生。病人到院更换药囊时应该仔细检查导管连接处的皮肤穿刺点,若皮肤局部出现红肿、流脓等应及时更换穿刺部位或者穿刺针,并进行相应处理。配置药液时应严格无菌操作,另外,加强对病人进行导管护理教育,勤换敷料,做好导管接口、皮肤消毒,增强免疫力等是预防导管相关感染的主要措施[10]。

综上所述,不同的阿片类药物储存于 PVC 药囊中,吗啡、羟考酮和氢吗啡酮在 28 天内无显著衰减,药物含量稳定;而芬太尼和舒芬太尼在 14 天后会发生一定程度药物含量的衰减,可能影响临床镇痛效果。五种药物在 PVC 药囊中储存 28 天性状保持稳定,无细菌滋生。本研究结果为 PCA 长时间镇痛治疗及阿片类药物的选择提供理论依据。本研究没有涉及阿片类药物与其他药物配伍(如局部

麻醉药、镇静药物等)对药物含量的影响,今后可继续展开研究。

利益冲突声明: 作者声明本文无利益冲突。

参考文献

- [1] 宋莉, 卢帆, 刘慧. 植入式鞘内药物输注系统用于顽固性癌痛病人的疗效及安全性分析 [J]. 中国肿瘤临床, 2016, 43(8):339-343.
- [2] 孙承红,董庆鹏,杨小龙,等.鞘内连续输注吗啡治疗顽固性癌痛的疗效观察[J].中国疼痛医学杂志, 2020,26(10):786-788.
- [3] 王昆,金毅. 难治性癌痛专家共识 (2017 年版)[J]. 中国肿瘤临床, 2017, 44(16):787-793.
- [4] Tokhadze N, Chennell P, Bernard L, *et al*. Impact of alternative materials to plasticized PVC infusion tubings on drug sorption and plasticizer release[J]. Sci Rep, 2019, 9(1):18917.
- [5] 曹汉忠,陈小红.不同材质镇痛泵药囊对枸橼酸芬太尼的吸附效应[J].临床麻醉学杂志,2010,26(12):1064-1065.
- [6] Deer TR, Pope JE, Hayek SM, et al. The polyanalgesic consensus conference (PACC): recommendations on intrathecal drug infusion systems best practices and guidelines[J]. Neuromodulation, 2017, 20 (2):96-132.
- [7] 余强,李佳宁,郭亮,等.输液器材质对输注药物吸附作用的研究进展[J].中国护理管理,2016,16(6):862-864.
- [8] Sahnoune M, Tokhadzé N, Devémy J, *et al.* Understanding and characterizing the drug sorption to pvc and pe materials[J]. ACS applied materials & interfaces, 2021,13(16):18594-18603.
- [9] Westphal M, Hohage H, Buerkle H, *et al.* Adsorption of sufentanil to epidural filters and catheters [J]. Eur J Anaesthesiol, 2003, 20(2):124-126.
- [10] Masoudifar M, Gouya MM, Pezeshki Z, et al. Health care-associated infections, including device-associated infections, and antimicrobial resistance in Iran: the national update for 2018[J]. J Prev Med Hyg, 2022, 62(4): E943-E949.